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Abstract
The premetric approach to electrodynamics provides a unified description
of a wide class of electromagnetic phenomena. In particular, it involves
axion, dilaton and skewon modifications of the classical electrodynamics.
This formalism also emerges when the non-minimal coupling between the
electromagnetic tensor and the torsion of Einstein–Cartan gravity is considered.
Moreover, the premetric formalism can serve as a general covariant background
of the electromagnetic properties of anisotropic media. In the current paper,
we study wave propagation in the premetric electrodynamics. We derive a
system of characteristic equations corresponded to premetric generalization
of the Maxwell equation. This singular system is characterized by the adjoint
matrix which turns to be of a very special form—proportional to a scalar quartic
factor. We prove that a necessary condition for the existence of a non-trivial
solution of the characteristic system is expressed by a unique scalar dispersion
relation. In the tangential (momentum) space, it determines a fourth-order light
hypersurface which replaces the ordinary light cone of the standard Maxwell
theory. We derive an explicit form of the covariant dispersion relation and
establish its algebraic and physical origin.

PACS numbers: 03.50.De, 03.30.+p, 04.80.y, 41.20.q

1. Introduction

On classical and quantum levels, Maxwell’s electrodynamics is a well-established theory,
whose results are in a very precise coordination with the experiment. This theory, however,
can require some principal modifications in order to include non-trivial interactions with other
physical fields. The following non-complete list indicates some directions of the possible
alternations.
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• Dilaton field. This scalar partner of the classical electromagnetic field is proposed recently
as a source of a possible variation of the fine-structure constant [1, 2].

• Axion field. This pseudo-scalar field is believed to play a central role in violation of
Lorentz and parity invariance [3–8].

• Birefringence and optical activity of vacuum. These effects are forbidden in the standard
(minimal coupling) model of interaction between the electromagnetic and the gravitational
fields. In the Cartan–Einstein model of gravity, the non-minimal coupling yields, in
general, the non-trivial effects of electromagnetic wave propagation [9–12].

Although the mentioned problems belong to rather different branches of the classical
field theory, their joint treatment can be provided in a unique framework of the premetric
electrodynamics. The roots of such an approach can be found in the older literature [13],
but its final form was derived only recently, see [14–20] and specially the book [19] and the
references given therein.

In the premetric construction, the electromagnetic field is considered on a bare differential
manifold without metric and/or connection. Instead, the manifold is assumed to be endowed
with a fourth-order constitutive pseudo-tensor, which provides the constitutive relation between
the electromagnetic field strength and the electromagnetic excitation tensors. The metric tensor
itself is only a secondary quantity in this construction. Its explicit form and even its signature
is derived from the properties of the constitutive tensor [15–21].

In the current paper, we study the electromagnetic waves propagation in the premetric
electrodynamics. From the technical point of view, our approach is similar to those used
in the relativistic plasmodynamics [24–26]. A principal difference is that we are dealing
with a metric-free background, thus the norm of the wave covector and its scalar product
with another covector are not acceptable. Roughly speaking, the indices in the tensorial
expressions cannot be raised or lowered. Moreover, we show that, for the electromagnetic
waves propagation, the metric tensor is indeed a secondary structure. The metric structure must
be considered as a result of the properties of the wave propagation and not as a predeclared
fact.

The main result of our consideration is a rigorous derivation of the covariant dispersion
relation. It is shown to originate from the adjoint matrix of a characteristic system of the
generalized Maxwell field equations.

The organization of the paper is as follows. In section 1, we give a brief account
of the premetric electrodynamics formalism. Section 2 is devoted to the geometric optics
approximation and the wave-type ansatz. When this ansatz is substituted in the Maxwell
system, the former is transformed into a system of linear algebraic equations. The algebraic
features of this characteristic system are studied in section 4. A covariant dispersion relation
emerges in section 5 as a necessary condition for the existence of a non-trivial wave-type
solution in premetric Maxwell electrodynamics. In section 6, we give an application of the
developed formalism to the simplest Maxwell case. The standard expressions of the Maxwell
theory are reinstated. Section 7 is devoted to a discussion of the proposed formalism and its
possible generalizations.

2. Premetric electrodynamics formalism

2.1. Motivations

In order to represent the motivations of the premetric electrodynamics, we briefly recall some
electromagnetism models which naturally lead to this generalization.
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2.1.1. Vacuum electrodynamics. In flat Minkowski spacetime, the electromagnetic field
is described by the antisymmetric tensor of the electromagnetic field strength Fij. In an
orthogonal Cartesian coordinate system {xi} with i = 0, 1, 2, 3, the dynamics of the field is
defined from a pair of the first-order partial differential equations:

εijklFjk,l = 0, F ij
,j = J i. (2.1)

Here, the comma denotes the partial differentiation. The Lévi-Civitá permutation pseudo-
tensor εijkl with the values {−1, 0, 1} is normalized by ε0123 = 1.

The first equation of (2.1) is completely independent of the metric. In the second one,
the Minkowski metric, ηij = diag(−1, 1, 1, 1), is involved implicitly. It is used here for the
definition of the covariant components of the field strength, i.e for raising the indices

F ij = ηimηjnFmn. (2.2)

To have a representation similar to those used below, we rewrite this equation as

F ij = 1
2χijmnFmn, where χijmn = ηimηjn − ηinηjm. (2.3)

In (2.1), the vector field Ji describes the electric current. Since the tensor F ij is antisymmetric,
the electric charge conservation law

J i
,i = 0 (2.4)

is a straightforward consequence of (2.1).
The relations above are invariant under a subgroup of linear rigid transformations of

coordinates which preserve the specific form of the Minkowski metric. This group includes
the instantaneous spatial rotations, Lorentz’s transformations and reflections.

2.1.2. Electrodynamics in gravity field. In a non-inertial frame, i.e. in curvilinear coordinates
on the flat spacetime, the Minkowski metric ηij is replaced by a generic pseudo-Riemannian
metric gij whose components depend on a spacetime point. On this background, the
transformational requirements are changed. The field equations must now be invariant
under arbitrary smooth transformations of the coordinates. To satisfy this transformational
requirement, the field equations (2.1) are modified to

εijklFjk,l = 0, (F ij
√−g),j = J i

√−g, (2.5)

where g = det(gij ). The covariant components of the electromagnetic field strength are
now defined via a multiplication by the metric tensor components which, in contrast to (2.2),
depend on a point

F ij = gimgjnFmn. (2.6)

Observe that now the components of two electromagnetic fields F ij and Fmn are different
functions of a point. In fact they can be treated as two independent physical fields. In such
an approach, metric tensor comes from a relation between these independent fields, i.e. from
a physical phenomenon.

Since F ij is antisymmetric, the inhomogeneous field equation of (2.5) yields a modified
electric charge conservation law

(J i
√−g),i = 0. (2.7)

In fact, this equation is not a conservation law for the vector field Ji itself. What is really
conserved is the product of Ji with the root of the metric determinant. It means that a conserved
electric current cannot be described by a covariant vector field so a redefinition of this basic

3



J. Phys. A: Math. Theor. 42 (2009) 475402 Y Itin

notion is necessary. Instead of treating it as a vector field, the electric current has to be
considered as a weight (+1) pseudo-vector density field

J i = J i
√−g. (2.8)

Also a weight (+1) pseudo-tensor density of electromagnetic excitation

Hij = F ij
√−g (2.9)

has to be involved. Under smooth transformations of the coordinates xi → xi ′ with the
Jacobian L = det(∂xi ′/∂xi), the transformation law for these pseudo-tensorial quantities
involves an additional factor 1/|L|. In order to have a covariant field equation, this factor
must be compensated. The first-order partial derivatives of the term

√−g make the job and
the whole equation is covariant.

Consequently, the general covariant field equations take the form

εijklFjk,l = 0, Hij
,j = J i , (2.10)

while the general covariant charge conservation law is written as

J i
,i = 0. (2.11)

The constitutive relation between two basic fields takes the form

F ij = 1
2χijmnFmn (2.12)

where the constitutive pseudo-tensor

χijmn = √−g(gimgjn − gingjm) (2.13)

is involved.
Although the described modification serves the curvilinear coordinates on a flat manifold,

it is well known to be enough also for the description of the electromagnetic field in a curved
spacetime of GR. Both field equations (2.10) and the conservation law (2.11) are general
covariant even being written via the ordinary partial derivatives.

2.1.3. Electrodynamics in anisotropic media. For anisotropic media in a flat Minkowski
space, Maxwell’s electrodynamics is described by two pairs of 3D vectors Eα,Bα and Dα,Hα ,
where the Greek indices are assumed to obtain the spatial values, α, β, . . . = 1, 2, 3. In the
4D notation, these vectors are assembled into two antisymmetric tensors: the electromagnetic
strength tensor Fij with the components

F0α = Eα, Fαβ = −εαβγ Bγ , (2.14)

and the electromagnetic excitation tensor Hij with the components

H 0α = Dα, Hαβ = εαβγ Hγ . (2.15)

In the 4D notation, the Maxwell field equations for the electromagnetic field in anisotropic
media are written in the form

εijklFij,k = 0, H ij
,j = J i. (2.16)

An additional ingredient, the constitutive relation between two electromagnetic tensors, Fij

and Hij , describes the characteristic properties of the media. For a wide range of anisotropic
materials, a linear constitutive relation is a sufficiently good approximation:

Dα = εαβEβ + γ α
βBβ, Hα = μ−1

αβ Bβ + γ̃α
βEβ. (2.17)

The electromagnetic current conservation law J i
,i = 0 is a consequence of the field

equation (2.16). Note also that equations (2.16) are invariant under arbitrary constant linear
transformations of the coordinates.
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2.2. Premetric field equations

The models accounted above show some similarity.

• The electromagnetic field is described by two second-order antisymmetric tensors. In
differential form notation, the field is represented by two second-order differential forms—
one twisted and one untwisted.

• All the models are described by similar systems of two first-order partial differential
equations.

• The antisymmetric tensorial fields are related by a linear constitutive relation.
• Even in vacuum electrodynamics, the metric of the manifold emerges only via a special

four-component tensor, i.e. it plays only a secondary role.

The accounted similarity naturally leads to a premetric generalization of the classical
electrodynamics. For a comprehensive account of this subject, see [19, 20] and the references
given therein.

In the premetric approach, two differential field equations for two second-order differential
forms, the electromagnetic field strength F and the electromagnetic excitation H, are
postulated:

dF = 0, dH = J . (2.18)

In (2.18), F is an even (untwisted) differential form. It does not change under arbitrary
transformations of coordinates. Alternatively, H and J are odd (twisted) differential forms.
Under a change of coordinates with a Jacobian L = det

(
Li

j

)
, they are multiplied by the sign

factor of L. Namely such identification of the electromagnetic fields guarantees the proper
integral conservation laws for magnetic flux and electric current, see [19].

Both equations (2.18) are expressed via differential forms thus they are manifestly
invariant under arbitrary smooth coordinate transformations. In a more general setting, see
[19], these equations can be considered as consequences of two integral conservation laws:
one for the magnetic flux and one for the electric current.

In a coordinate chart, we represent the forms as

F = 1
2 Fij dxi ∧ dxj , H = 1

2 H
ij εijmn dxm ∧ dxn, (2.19)

while

J = 1

3!
J iεijmn dxj ∧ dxm ∧ dxn. (2.20)

Thus, the components Fij constitute an ordinary antisymmetric tensor while the components
Hij and J i are pseudo-tensor densities of weight (+1).

Applying the exterior derivatives to (2.19) we rewrite the field equations (2.18) in the
tensorial form

εijklFjk,l = 0, Hij
,j = J i . (2.21)

Even being written via the ordinary partial derivatives, these equations are covariant under
arbitrary smooth transformations of coordinates. Note also that a metric tensor or a connection
is not involved in the construction above. One can even say that these structures are not defined
(yet) on the space. In this sense, the construction is premetric. Particularly, in such an approach,
the covariant components of the field strength tensor and the contravariant components of the
excitation tensor cannot be introduced—the indices cannot be raised or lowered.
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2.3. Constitutive relation

The system (2.21) involves 8 equations for 12 independent variables so it is undetermined.
Moreover, the 2-form H describes a field generated by a charged source, while the 2-form F
describes some other field which acts on a test charge. In a current stage of the construction,
these two fields are formal and completely independent. It means that an interaction between
two charges is not yet involved. In order to close the system and to involve an interaction, a
constitutive relation between the fields Fij and Hij must be implicated. The simplest choice
of a local linear homogeneous relation

Hij = 1
2χijklFkl (2.22)

is wide enough to describe the most observation data of the ordinary electrodynamics and even
involves some additional electromagnetic effects, such as axion, dilaton and skewon partners
of photon, see [19]. Also for the electromagnetism into the non-magnetized media, the linear
constitutive relation is a good approximation. For the nonlinear extensions of the premetric
approach, see [23]. The non-local constitutive relations were considered recently in [22].

Recall that the physical space is considered as a bare manifold without metric or
connection. All the information on its geometry is encoded into the constitutive pseudo-
tensor χijkl which can depend on the time and position coordinates. By definition, this
pseudo-tensor inherits the symmetries of the antisymmetric tensors Fij , Hij . In particular,

χijkl = χ [ij ]kl = χij [kl]. (2.23)

Thus, in general, the fourth-order constitutive tensor χijkl has 36 independent components
instead of 43. Due to the Young diagrams analysis, under the group of linear transformations,
such a tensor is irreducibly decomposed into a sum of three independent pieces:

χijkl = (1)χ ijkl + (2)χ ijkl + (3)χ ijkl . (2.24)

The axion part (1 component) and the skewon part (15 components) are defined respectively
as

(3)χ ijkl = χ [ijkl], (2)χ ijkl = 1
2 (χijkl − χklij ). (2.25)

The remainder (1)χ ijkl is a principal part of 20 independent components. One can also extract
a scalar factor from the principal part which was identified recently [22] with the dilaton
partner of electromagnetic field [1, 2].

3. Approximation and ansatz

3.1. Semi-covariant approximation

When the constitutive relation (2.22) is substituted into the field equation (2.21b), we remain
with

1
2χijklFkl,j + 1

2χijkl
,jFkl = J i . (3.1)

The first term here describes how the electromagnetic field changes in a spacetime of constant
media characteristics. Alternatively, the second term describes the spacetime variation of
the media characteristics for a constant electromagnetic field. In this paper, we restrict to
the geometrical optics approximation. In particular, we neglect with the second term of
(3.1) relative to the first one. In other words, we restrict to media whose characteristics
change slowly on the characteristic distances of the change of the fields. Note that such
approximation is not always applicable. In particular, the Carroll–Field–Jackiw modification
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of electrodynamics [4] can be reformulated as a premetric electrodynamics [6–8] where the
first term of (3.1) vanishes, whereas the birefringence effect comes from the second term.

In the framework of the geometrical approximation, we remain with a system of eight
equations for six independent components of the electromagnetic field strength Fij:

εijklFjk,l = 0, 1
2χijklFkl,j = J i . (3.2)

In a special case of the Maxwell constitutive tensor, the approximation used here yields the
inhomogeneous field equation of the form

gikgjlFkl,j = J i . (3.3)

This is an approximation of the covariant equation (2.5) when the derivatives of the metric
tensor are considered to be small relative to the derivatives of the electromagnetic field. Such a
semi-covariant approximation is preserved for arbitrary coordinate transformations with small
spacetime derivatives.

3.2. Eikonal ansatz

To describe the wave-type solutions of the field equations (3.2), we consider an eikonal ansatz.
Let the electric current be given in the form

J i = j ieσ , (3.4)

and let the corresponding field strength be expressed as

Fij = fij e
σ . (3.5)

Here the eikonal σ is a scalar function of a spacetime point. The tensors ji and fij are assumed
to be slow functions of a point. The derivatives of σ give the main contributions to the field
equations. Define the wave covector

qi = ∂σ

∂xi
. (3.6)

In this approximation, the conservation law for the electric current J i
,i = 0 takes a form of an

algebraic equation

j iqi = 0. (3.7)

Substituting (3.4), (3.5) into the field equations (3.2) and removing the derivatives of the
amplitudes relative to the derivative of the eikonal function, we come to an algebraic system

εijklqjfkl = 0, χijklqjfkl = 2j i . (3.8)

The same system was derived in [19] by mean of Hadamar’s discontinuity propagation method.
This fact indicates that a simple approximation used here is not less general than the one used
in [19].

Observe a remarkable property of (3.8). If all the quantities involved here are assumed to
transform by ordinary tensorial transformation rules with arbitrary pointwise matrices, both
equations are preserved. In other words, these equations are straightforward expanded to a
general covariant system. This is in spite of the fact that the approximations used in their
derivation are not covariant. This property is generic for quasi-linear systems whose leading
terms (the higher order derivatives expressions) are linear and thus preserve their form even
under arbitrary pointwise transformations.
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4. Characteristic equations

4.1. The linear system

The approximation (3.2) and the wave-type ansatz (3.4), (3.5) yield a linear system (3.8) of
eight equations for six independent variables. This algebraic system will serve as a starting
point of our analysis. Observe first that the system is not overdetermined. Indeed, when
both equations are multiplied by a covector qi, they turn to trivial identities, provided that
the electric current is conserved. Thus, we have two linear relations between eight linear
equations (3.8) for six independent variables. It means that the rank of the system (3.8) is less
than or equal to 6. The physical meaning of this system requires the rank to be exactly equal
to 6. Indeed, the unknowns fkl of this system are physically measurable quantities. Thus,
for an arbitrary conserved current ji, they have to be determined from (3.8) uniquely. This
physical requirement puts a strong algebraic constraint on the system (3.8) —its coefficients
must form a matrix of a rank of 6. In fact, it is a constraint on the components of the constitutive
pseudo-tensor χijkl , whose formal expression we will derive subsequently.

4.2. The homogeneous equation

The homogeneous equation (3.8) is exactly the same as in the standard Maxwell theory. We
give here a precise treatment of this equation mostly in order to establish the notation and to
illustrate the method used in the following.

Proposition 1. A most general solution of a linear system

εijklqjfkl = 0 (4.1)

is expressed as

fkl = 1
2 (akql − alqk), (4.2)

where ak is an arbitrary covector.

Proof. Expression (4.2) is evidently a solution of (4.1). In order to prove that it is a most
general solution, we first note that (4.1) is a linear system of four equations for six independent
variables fij . The 4 × 6 matrix of this system aikl = εijklqj with ik = 01, 02, 03, 12, 23, 31
and l = 0, 1, 2, 3 is given by

aikl =

⎛
⎜⎜⎝

0 0 0 q3 −q2 q1

0 −q3 q2 0 0 −q0

q3 0 −q1 0 q0 0
q2 q1 0 −q0 0 0

⎞
⎟⎟⎠ . (4.3)

The rows of this matrix satisfy a linear relation

aiklqi = 0. (4.4)

Thus its rank is 3 or less. If an arbitrary row is now removed from (4.3), the remaining three
columns are assembled in the echelon form. Thus the matrix (4.3) has exactly a rank of 3.
Consequently, a general solution of (4.1) has to involve 6 − 3 = 3 independent parameters.
This is exactly what is given in (4.2). Indeed, although the arbitrary covector ai has four
independent components, only three of them are involved in (4.2). In particular, the vector ai

proportional to qi does not give a contribution. Thus, (4.2) is a most general covariant solution
of (4.1). �
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It is well known that the homogeneous field equation (3.2) is solved in terms of the standard
vector potential Ai. The covector ai appeared in (4.2) is similar to the Fourier transform of
the potential Ai. As usual, this covector is arbitrary if only the homogeneous field equation is
taken into account.

4.3. The inhomogeneous equation

Let us now turn to the inhomogeneous equation of (3.8). Substituting the solution (4.2), we
arrive at an algebraic system

χijklqlqj ak = j i . (4.5)

Observe that this is a system of four equations for four variables ak. The matrix of this system,

Mik = χijklqlqj , (4.6)

will be refereed to as a characteristic matrix. We will see that the wave propagation depends
exactly on the specific combination of the components of the constitutive pseudo-tensor χijkl

which are involved in Mik .
When the irreducible decomposition (2.24) is substituted into the characteristic matrix

Mij , the completely antisymmetric axion part (3)χ ijkl evidently does not contribute. As for
the other two pieces, the principal part is involved only in the symmetric part of the matrix
Mij , while the skewon part is involved only in its antisymmetric part. Formally, we can write

M(ik) = Mik((1)χ), M [ik] = Mik((2)χ). (4.7)

So, the characteristic matrix Mik is irreducibly decomposed as

Mik = M(ik)((1)χ) + M [ik]((2)χ). (4.8)

In the characteristic matrix notation, equation (4.5) takes the form

Mikak = j i . (4.9)

The following two facts will play an important role in our analysis.
(1) Gauge invariant condition. Due to the antisymmetry of the constitutive pseudo-tensor

χijkl in its last two indices, an identity

Mikqk = 0 (4.10)

holds true. It is a linear relation between the rows of the matrix Mik . It means that every
solution of (4.5) is defined only up to an addition of a term ai ∼ qi . This addition is evidently
unphysical since it does not contribute to the electromagnetic strength. Consequently, relation
(4.10) has to be interpreted as a gauge invariant condition.

(2) Charge conservation condition. Another evident identity for the matrix Mik emerges
from the antisymmetry of the constitutive pseudo-tensor χijkl in its first two indices:

Mikqi = 0. (4.11)

It is a linear relation between the columns of the matrix Mik . Being compared with (4.9), it
yields j iqi = 0. Consequently, relation (4.11) has to be interpreted as a charge conservation
condition.

Thus we arrive at some type of a duality between the charge conservation and the gauge
invariance. Note that this duality is expressed by a standard algebraic fact: for any matrix, the
column rank and the row rank are equal to one another.

Due to the conditions indicated above, the rows (and the columns) of the matrix Mij are
linearly dependent, so its determinant is equal to zero. It can be checked straightforwardly,
but one has to apply here rather tedious calculations.

9
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5. Dispersion relation

5.1. How it emerges

In the vacuum case of the free electromagnetic waves, (4.5) takes a form of a linear
homogeneous system of four equations for four components of the covector ak:

χijklqlqj ak = 0, or Mikak = 0. (5.1)

The gauge relation (4.10) can be interpreted as a fact that

al = Cql (5.2)

is a formal solution of (5.1). This solution does not contribute to the electromagnetic field
strength so it is unphysical. Hence, the formal system (5.1) can have a nonzero solution, only
if it has an additional solution which must be linearly independent on (5.2). Consequently
(5.1) must have at least two linearly independent solutions. A known fact from linear algebra
is that a linear system has two (or more) linearly independent solutions if and only if the rank
of the matrix Mij is 2 (or less). In this case, the adjoint matrix (constructed from the cofactors
of Mij ) is equal to zero, Aij = 0.

In order to present a formal expression of this fact we will start with a formula for the
determinant of an arbitrary fourth-order matrix:

det(M) = 1

4!
εii1i2i3εjj1j2j3M

ijMi1j1Mi2j2Mi3j3 . (5.3)

The components of the adjoint matrix are expressed by the derivatives of the determinant
relative to the entries of the matrix:

Aij = ∂ det(M)

∂ Mij
. (5.4)

Explicitly,

Aij = 1

3!
εii1i2i3εjj1j2j3M

i1j1Mi2j2Mi3j3 . (5.5)

Consequently, we derived a physically motivated condition on the components of the
constitutive pseudo-tensor χijkl .

Theorem 2. The Maxwell system with a general linear constitutive relation has a non-trivial
wave-type solution if and only if the adjoint of the matrix Mik = χijklqlqj is equal to zero, i.e.

Aij = 0, (5.6)

or explicitly,

εii1i2i3εjj1j2j3M
i1j1Mi2j2Mi3j3 = 0. (5.7)

Since the adjoint matrix has 16 independent components, it seems that we have to require,
in general, 16 independent conditions. In fact, the situation is rather simpler. The following
algebraic fact is important in our analysis, so we present here its formal proof.

Proposition 3. Let a square n × n matrix Mij satisfies the relations

Mijqi = 0, Mijqj = 0, (5.8)

for an arbitrary nonzero n-covector qi. The adjoint matrix Aij = Adj (Mij ) is proportional
to the tensor square of qi, i.e.

Aij = λ(q)qiqj . (5.9)

10
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Proof. Due to (5.8), the rows (and the columns) of Mij are linear dependent, so the matrix
is singular and its rank is equal to n − 1 or less. If the rank is less than (n − 1), the adjoint
matrix is identically zero and (5.9) is satisfied trivially for λ = 0.

Let the rank of Mij be equal to (n − 1). In this case, qi is a unique covector (up to a
multiplication on a constant) that satisfies (5.8). It is well known that for a matrix of a rank of
(n − 1), the adjoint Aij is a matrix of a rank of 1. Moreover, an arbitrary rank 1 matrix can be
written as a tensor product of two covectors:

Aij = uivj . (5.10)

Let us now show that both these covectors must be proportional to qi. Indeed, the product of an
arbitrary matrix with its adjoint is equal to the determinant of the matrix times the unit matrix
(this is the generalized Laplace expansion theorem). In our case, Mij is a singular matrix so

AijM
ik = AijM

kj = 0. (5.11)

Substituting here (5.10), we have the relations

uivjM
ik = 0 uivjM

jk = 0, (5.12)

or, equivalently,

uiM
ik = 0 vjM

jk = 0. (5.13)

Comparing this pair of relations to (5.9) and remembering that qi is unique up to a multiplication
on a constant, we conclude that both covectors ui and vi are proportional to qi. Thus (5.4)
indeed takes the form (5.9). �

Consequently, in order to have a physically non-trivial vacuum wave-type solution, the
system (5.1) has to satisfy a unique scalar condition

λ(q) = 0. (5.14)

In fact, this is an expression for the principal dispersion relation.

5.2. Some basic properties of the dispersion relation

Even without an explicit expression for the function λ(q), we are now ready to derive some
characteristic properties of the dispersion relation (5.14). Some of these properties were
recently derived in [19] by involved straightforward calculations. In our approach, these
properties are immediate consequences of the definition of the λ-function (5.9).

Corollary 4. λ(q) is a homogeneous fourth-order polynomial of the wave covector qi, i.e.

λ(q) = Gijklqiqjqkql, (5.15)

where Gijkl is a pseudo-tensor independent of qi.
Indeed, the adjoint matrix is a homogeneous polynomial of the sixth order in qi. By (5.9),

after extracting the product qiqj we remain with a sum of terms each of which is a product of
four components of the covector qi. Since λ(q) is a pseudo-scalar, Gijkl is a pseudo-tensor.

Corollary 5. λ(q) is a homogeneous third-order polynomial of the constitutive pseudo-tensor
χijkl .

Indeed, the adjoint matrix is a sum of terms which are cubic in the matrix Mij . Every
such term is a product of three χ ’s which remains also after extracting the product qiqj on the
right-hand side of (5.9).
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Corollary 6. The equation λ(q) = 0 defines a complex algebraic cone.
For a given set of vectors K = {x1, x2, . . .}, an algebraic cone is defined as a set of vectors

CK = {Cx1, Cx2, . . .}, where C > 0 is an arbitrary number. Due to the homogeneity of the
dispersion relation (5.14), each of its solutions is defined up to a product on a constant. This
(generally complex) algebraic cone is a prototype of a light cone emerging from a Lorentz
metric of vacuum electrodynamics or by optical metric of electromagnetism in dielectric media.
The algebraic cone is real when additional hyperbolicity conditions are applied [27].

Corollary 7. The axion part of the constitutive tensor does not contribute to the function
λ(q). In other words,

λ((1)χ +(2) χ +(3) χ) = λ((1)χ +(2) χ). (5.16)

Indeed, the axion part does not contribute to the matrix Mij , so it does not appear in its
adjoint.

Corollary 8. The skewon part alone does not emerge in a non-trivial dispersion relation. In
other words, a relation

λ((2)χ) = 0 (5.17)

holds identically.
Indeed, in order to have a non-trivial (non-zero) expression for λ(q), the rank of the

matrix Mij has to be equal to 3. The skewon part generates an antisymmetric matrix M [ij ].
Since the rank of an arbitrary antisymmetric matrix is even, the skewon part alone does not
emerge in a non-trivial dispersion relation.

Corollary 9. A non-trivial (non-zero) dispersion relation emerges only if the principal part
of the constitutive tensor is non-zero:

(1)χ �= 0. (5.18)

This is an immediate result of the previous statements.

6. Dispersion relation in an explicit form

6.1. Covariant dispersion relation I

Our task now is to derive an explicit expression for the dispersion relation. Recall that it is
represented by a scalar equation

λ(q) = 0, (6.1)

where the function λ(q) satisfies the equation

Aij = λ(q)qiqj (6.2)

for the adjoint matrix Aij of the characteristic matrix Mij . To have an explicit expression
for λ(q), it is necessary ‘to divide’ both sides of (6.2) by the product qiqj . Certainly such a
‘division’ must be produced in a covariant way. We will look first for a solution of this problem
in a special coordinate system. Let a zeroth (time) axis be directed as a wave covector, i.e.
q0 = q, q1 = q2 = q3 = 0. Substituting into (6.2) we have

λ(q)q2 = 1

3!
ε0i1i2i3ε0j1j2j3M

i1j1Mi2j2Mi3j3 . (6.3)

12
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Due to the symmetry properties of the Lévi-Civitá pseudo-tensor, all four-dimensional indices
can be replaced by the three-dimensional ones (α, β = 1, 2, 3). So we get

λ(q)q2 = 1

3!
ε0α1α2α3ε0β1β2β3M

α1β1Mα2β2Mα3β3 . (6.4)

In the chosen system, the non-zero components of the matrix Mij are

Mαβ = χαmβnqmqn = χα0β0q2. (6.5)

Consequently,

λ(q) = 1

3!
εα1α2α3εβ1β2β3χ

α10β10χα20β20χα30β30q4, (6.6)

where the three-dimensional Lévi-Civitá pseudo-tensor εα1α2α3 = ε0α1α2α3 is involved. The
non-covariant dispersion relation takes the form [19]

εα1α2α3εβ1β2β3χ
α10β10χα20β20χα30β30q4 = 0. (6.7)

In [15], [19], equation (6.7) was derived by the consideration of the three-dimensional
determinant of the system. It was generalized to a covariant four-dimensional dispersion
relation

1

4!
εii1i2i3εjj1j2j3χ

ii1jaχbi2j1cχdi3j2j3qaqbqcqd = 0. (6.8)

The λ-function can be read off from this equation as

λ(q) = 1

4!
εii1i2i3εjj1j2j3χ

ii1jaχbi2j1cχdi3j2j3qaqbqcqd . (6.9)

The result (6.8) turns to be correct, as we will show in the following.

6.2. Covariant dispersion relation II

We will now give a pure covariant derivation of the scalar function λ(q) and of the
corresponding dispersion relation. Differentiation of (5.9) relative to the components of
the covector qm yields

∂Aij

∂qm

= ∂λ(q)

∂qm

qiqj + λ(q)
(
δm
i qj + δm

j qi

)
. (6.10)

Let us contract this equation over the indices m and i and use the Euler formula for a fourth-
order homogeneous function λ(q). Consequently, we derive

∂Aij

∂qi

= 9λ(q)qj . (6.11)

A second-order derivative of this expression is given by

∂2Aij

∂qi∂qm

= 9

(
∂ λ(q)

∂qm

qj + λ(q)δm
j

)
. (6.12)

Now summing over the indices m and j and using once more the Euler formula, we derive

λ(q) = 1

72

∂2Aij

∂qi∂qj

. (6.13)

Consequently, we have proved the following.

Theorem 10. For the Maxwell system with a general local linear constitutive relation, the
dispersion relation is given by

∂2Aij

∂qi∂qj

= 0. (6.14)

13
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In order to have an expression of the λ-function in terms of the matrix Mij , we calculate
the derivatives of the adjoint matrix

∂Aij

∂qi

= 1

2
εii1i2i3εjj1j2j3

∂Mi1j1

∂qi

Mi2j2Mi3j3 . (6.15)

Substituting into (6.14) and calculating the second-order derivative, we get

λ(q) = 1

144
εii1i2i3εjj1j2j3

(
∂2Mi1j1

∂qi∂qj

Mi2j2 + 2
∂Mi1j1

∂qi

∂Mi2j2

∂qj

)
Mi3j3 . (6.16)

This expression may be useful for actual calculations of the dispersion relation for different
electromagnetic media. In particular, the following decomposition represents the contribution
of the skewon part in the dispersion relation. Different forms of it can be found in [19].

Proposition 12. Due to the irreducible decomposition of the constitutive pseudo-tensor, the
dispersion relation λ(χ) = 0 is given by

λ((1)χ) +
1

2
εii1i2i3εjj1j2j3

∂2

∂qi∂qj

[M(i1j1)((1)χ)M [i2j2]((2)χ)M [i3j3]((2)χ)] = 0. (6.17)

Proof. The relation follows straightforwardly when the decomposition (4.8) is substituted
into (6.14) and the antisymmetric terms are removed. �

6.3. Covariant dispersion relation III

An explicit expression of the λ-function via the constitutive pseudo-tensor is calculated by the
derivatives of the matrix

Mij = χiajbqaqb = −χiabj qaqb = −χi(ab)j qaqb. (6.18)

The first-order derivative is given by

∂Mi1j1

∂qi

= ∂

∂qi

(χi1mj1nqmqn) = −2χi1(im)j1qm. (6.19)

Hence, the second-order derivative reads

∂2Mi1j1

∂qi∂qj

= −2χi1(ij)j1 . (6.20)

Consequently, the left-hand side of (6.16) takes the form

λ(q) = 1

3 · 4!
εii1i2i3εjj1j2j3(−χi1(ij)j1Mi2j2 + 4χi1(ia)j1χi2(jb)j2qaqb)M

i3j3

= 1

3 · 4!
εii1i2i3εjj1j2j3(χ

i1(ij)j1χi2(ab)j2 + 4χi1(ia)j1χi2(jb)j2)Mi3j3qaqb

= 1

3 · 4!
εii1i2i3εjj1j2j3(χ

i1(ij)j1χi2(ab)j2 + 4χi1(ia)j1χi2(jb)j2)χi3(cd)j3qaqbqcqd . (6.21)

We finally have the covariant dispersion relation in the form

εii1i2i3εjj1j2j3(χ
i1(ij)j1χi2abj2 + 4χi1(ia)j1χi2(jb)j2)χi3cdj3qaqbqcqd = 0. (6.22)

This equation turns out to be equivalent to (6.8). The direct proof of this fact was provided by
Yu Obukhov, see the appendix.

Different forms of the covariant dispersion relation are additional outputs of this proof.
In particular, by using the Y6 term (A.7) we have the dispersion relation in the form

εii1i2i3 εjj1j2j3 χi1aij1χi2bjj2 χi3cdj3 qaqbqcqd = 0. (6.23)
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The Y3 term (A.4) gives

εii1i2i3 εjj1j2j3 χi1iaj1χi2jbj2 χi3cdj3 qaqbqcqd = 0. (6.24)

Probably the most symmetric form is obtained from the Y1 term (A.2):

εii1i2i3 εjj1j2j3 χii1jj1χi2abj2 χi3cdj3 qaqbqcqd = 0. (6.25)

7. Maxwell electrodynamics reinstated

7.1. Maxwell constitutive pseudo-tensor

When the premetric scheme is applied on a manifold with a prescribed metric tensor gij, the
standard Maxwell electrodynamics (2.5) is reinstated by substitutions

Hij = √−ggimgjnFmn = 1
2

√−g(gimgjn − gingjm)Fmn. (7.1)

Recall that the electric current vector density is expressed as

J i = J i
√−g. (7.2)

The constitutive relation (7.1) corresponds to a choice of a special Maxwell–Lorentz
constitutive pseudo-tensor

(Max)χ ijkl = √−g(gikgjl − gilgjk). (7.3)

We use here a system of units in which a constant with the dimension of an admittance (denoted
by λ0 in [19]) is taken to be equal to 1. When (7.3) is substituted in (2.21) we return to the
standard Maxwell electrodynamics system (2.5).

7.2. Dispersion relation

Let us derive the standard metrical dispersion relation. The characteristic matrix corresponded
to the constitutive pseudo-tensor (7.3) takes the form

Mik =
√

|g|(gikq2 − qiqj ), (7.4)

where the notations q2 = gij qiqj and qi = gimqm are used. The adjoint of this matrix is
calculated straightforwardly:

Aij = 1

3!
εii1i2i3εjj1j2j3M

i1j1Mi2j2Mi3j3

= 1

3!

√
|g|3εii1i2i3εjj1j2j3(g

i1j1q2 − qi1qj1)(gi2j2q2 − qi2qj2)(gi3j3q2 − qi3qj3)

= 1

3!

√
|g|3εii1i2i3εjj1j2j3(g

i1j1gi2j2gi3j3q6 − 3gi2j2gi3j3qi1qj1q4)

= 1

3!

√
|g|3[−6gij q

6 + 6(gij gi1j1 − gij1gi1j )q
i1qj1q4]. (7.5)

The first two terms cancel one another so the adjoint matrix remains in the form

Aij = −
√

|g|3qiqjq
4. (7.6)

Correspondingly,

λ = −
√

|g|3q4 (7.7)

and the dispersion relation takes the standard form

q2 = 0 ⇐⇒ gij qiqj = 0. (7.8)

From (7.7) we also deduce that the pseudo-tensor appeared in (5.15) takes the form

Gijkl = − 1
2

√
|g|3(gij gkl + gikgjl). (7.9)
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8. Results and discussion

Premetric electrodynamics can be viewed as a general framework for the description of a wide
class of electromagnetic effects. In this paper we discussed the geometric optics approximation
of the wave propagation in this model. Due to the standard procedure of partial differential
equations theory, such approximation represents the leading contribution to the corresponding
solutions. We derived a covariant dispersion relation and showed that this relation represents
the existence of the wave-type solution in the premetric electromagnetic model. It should
be noted that our expression of the covariant dispersion relation is not less complicated than
the one represented in the literature [19]. An advantage of our approach is that we give a
straightforward covariant procedure how the dispersion relation can be derived for various
constitutive relations. For this, one does not need to deal with the explicit covariant formula
at all. It is enough to construct the characteristic matrix Mij and calculate its adjoint Aij . Due
to the proposition, proved in the paper, the extra factors qiqj are separated from Aij and the
remain part is the essential term of the dispersion relation. We have shown how this procedure
works in the case of the standard Maxwell constitutive relation. The problem of uniqueness of
the wave-type solution in the premetric electromagnetic model is related to another principal
notion—the photon propagator [8, 28]. A detailed consideration of this quantity and of its
relation to the uniqueness problem will be represented in a separate publication.
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Appendix. Obukhov’s proof of the equivalence of the dispersion relations

A.1. Expressions for comparison

Equation (6.21) reads

λ(q) = 1

6 · 4!
[Y1 + Y2 + 2(Y3 + Y4 + Y5 + Y6)], (A.1)

where the six terms are explicitly given by

Y1 := εii1i2i3 εjj1j2j3 χi1ijj1χi2abj2 χi3cdj3 qaqbqcqd, (A.2)

Y2 := εii1i2i3 εjj1j2j3 χi1jij1χi2abj2 χi3cdj3 qaqbqcqd, (A.3)

Y3 := εii1i2i3 εjj1j2j3 χi1iaj1χi2jbj2 χi3cdj3 qaqbqcqd, (A.4)

Y4 := εii1i2i3 εjj1j2j3 χi1iaj1χi2bjj2 χi3cdj3 qaqbqcqd, (A.5)

Y5 := εii1i2i3 εjj1j2j3 χi1aij1χi2jbj2 χi3cdj3 qaqbqcqd, (A.6)

Y6 := εii1i2i3 εjj1j2j3 χi1aij1χi2bjj2 χi3cdj3 qaqbqcqd . (A.7)

Our Fresnel equation is given by formulas (D.2.22) and (D.2.23) of the book [19], with

λ̃(q) = = 1

4!
ε̂mnpq ε̂rstu χ̃mnri χ̃ jpsk χ̃ lqtu qiqjqkql

= 1

4!
ε̂ii1i3i2 ε̂j1j3jj2 χ̃ ii1j1a χ̃ bi3j3c χ̃ di2jj2 qaqbqcqd

= − 1

4!
ε̂ii1i2i3 ε̂jj1j2j3 χ̃ ii iaj1 χ̃ i3cdj3 χ̃ i2bjj2 qaqbqcqd . (A.8)
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Formulas (A.2)–(A.7) also contain the reduced constitutive tensor χ̃ = (1)χ + (2)χ since the
axion part (3)χ does not contribute to the matrix Mij . So from now on, we will drop the tildes,
simply keeping in mind that the axion is not present in all our derivations.

Accordingly, we find that

λ̃(q) = − 1

4!
Y4. (A.9)

A.2. Method

We will use the well-known fact that in four dimensions any totally antisymmetric tensor of
the fifth rank is identically zero. In particular,

ε[ijkl Aa] ≡ 0, (A.10)

where Aa can be anything (the other indices are suppressed for clarity).
Since the Lévi-Civitá tensor is totally antisymmetric in its four indices, the above identity

contains just five terms, and we can conveniently rewrite it as follows:

εijkl Aa ≡ εajkl Ai + εiakl Aj + εijal Ak + εijka Al. (A.11)

We will repeatedly use this identity in order to establish the relations between different terms
Y1–Y6.

A.3. Relations between different terms

Derivation of relations between Y1–Y6 is technically simple, but requires patience and attention.
The main tool is the identity (A.11). In particular, we have

εii1i2i3 qa ≡ εai1i2i3 qi + εiai2i3 qi1 + εii1ai3 qi2 + εii1i2a qi3 , (A.12)

εjj1j2j3 qa ≡ εaj1j2j3 qj + εjaj2j3 qj1 + εjj1aj3 qj2 + εjj1j2a qj3 , (A.13)

εii1i2i3 εjj1j2j3 ≡ εji1i2i3 εij1j2j3 + εiji2i3 εi1j1j2j3 + εii1ji3 εi2j1j2j3 + εii1i2j εi3j1j2j3 . (A.14)

These three formulas are all we need in the subsequent computations.

Relation between Y6 and Y4. Using (A.12) in (A.7), we find

Y6 = εii1i2i3 εjj1j2j3 χi1aij1χi2bjj2 χi3cdj3 qaqbqcqd

= εai1i2i3 εjj1j2j3 χi1aij1χi2bjj2 χi3cdj3 qiqbqcqd

+ εiai2i3 εjj1j2j3 χi1aij1χi2bjj2 χi3cdj3 qi1qbqcqd

+ εii1ai3 εjj1j2j3 χi1aij1χi2bjj2 χi3cdj3 qi2qbqcqd

+ εii1i2a εjj1j2j3 χi1aij1χi2bjj2 χi3cdj3 qi3qbqcqd . (A.15)

The last two terms are zero because the symmetric tensors qi2qb and qi3qc are contracted with
skew-symmetric pairs of indices. The first term, after renaming the summation indices a → i

and i → a, is equal to Y4. The second term, after renaming the summation indices a → i1 and
i1 → a, is equal to the original expression with the different sign, i.e. to −Y6. Consequently,

Y6 = 1
2 Y4. (A.16)
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Relation between Y3 and Y5. Analogously, using (A.12) in (A.4), we find

Y3 = εii1i2i3 εjj1j2j3 χi1iaj1χi2jbj2 χi3cdj3 qaqbqcqd

= εai1i2i3 εjj1j2j3 χi1iaj1χi2jbj2 χi3cdj3 qiqbqcqd

+ εiai2i3 εjj1j2j3 χi1iaj1χi2jbj2 χi3cdj3 qi1qbqcqd

+ εii1ai3 εjj1j2j3 χi1iaj1χi2jbj2 χi3cdj3 qi2qbqcqd

+ εii1i2a εjj1j2j3 χi1iaj1χi2jbj2 χi3cdj3 qi3qbqcqd . (A.17)

The last term vanishes because qi3qc is contracted with the skew-symmetric pair of indices.
The first term, after renaming the summation indices a → i and i → a, is equal to Y5. The
second term, after renaming the summation indices a → i, i → i1 and i1 → a, is again equal
to Y5. Finally, the third term will be denoted by . Consequently, we find

Y3 = 2 Y5 + . (A.18)

Relation between Y3 and Y1. Now, if we use (A.13) in (A.4), we find

Y3 = εii1i2i3 εjj1j2j3 χi1iaj1χi2jbj2 χi3cdj3 qaqbqcqd

= εii1i2i3 εaj1j2j3 χi1iaj1χi2jbj2 χi3cdj3 qjqbqcqd

+ εii1i2i3 εjaj2j3 χi1iaj1χi2jbj2 χi3cdj3 qj1qbqcqd

+ εii1i2i3 εjj1aj3 χi1iaj1χi2jbj2 χi3cdj3 qj2qbqcqd

+ εii1i2i3 εjj1j2a χi1iaj1χi2jbj2 χi3cdj3 qj3qbqcqd . (A.19)

The last two terms are zero because the symmetric tensors qj2qb and qj3qd are contracted
with skew-symmetric pairs of indices. The first term, after renaming the summation indices
a → j and j → a, is equal to Y1. The second term, after renaming the summation indices
a → j1 and j1 → a, is equal to the original expression with the different sign, i.e. to −Y3.
Consequently,

Y3 = 1
2 Y1. (A.20)

Relation between Y4 and Y1. Now, if we use (A.13) in (A.5), we find

Y4 = εii1i2i3 εjj1j2j3 χi1iaj1χi2bjj2 χi3cdj3 qaqbqcqd

= εii1i2i3 εaj1j2j3 χi1iaj1χi2bjj2 χi3cdj3 qjqbqcqd

+ εii1i2i3 εjaj2j3 χi1iaj1χi2bjj2 χi3cdj3 qj1qbqcqd

+ εii1i2i3 εjj1aj3 χi1iaj1χi2bjj2 χi3cdj3 qj2qbqcqd

+ εii1i2i3 εjj1j2a χi1iaj1χi2bjj2 χi3cdj3 qj3qbqcqd . (A.21)

The last term vanishes because qj3qd is contracted with the skew-symmetric pair of indices.
The first term, after renaming the summation indices a → j and j → a, is equal to Y1.
The second term, after renaming the summation indices a → j1 and j1 → a, is equal to
the original term with a minus sign, i.e. to −Y4. Finally, the third term, after renaming the
summation indices a → j , j → j2 and j2 → a is again equal to Y1. Consequently,

Y4 = Y1. (A.22)
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Relation between Y2 and Y1. Finally, we need one more relation. This is obtained when we
use (A.14) in (A.3). Then

Y2 = εii1i2i3 εjj1j2j3 χi1jij1χi2abj2 χi3cdj3 qaqbqcqd

= εji1i2i3 εij1j2j3 χi1jij1χi2abj2 χi3cdj3 qaqbqcqd

+ εiji2i3 εi1j1j2j3 χi1jij1χi2abj2 χi3cdj3 qaqbqcqd

+ εii1ji3 εi2j1j2j3 χi1jij1χi2abj2 χi3cdj3 qaqbqcqd

+ εii1i2j εi3j1j2j3 χi1jij1χi2abj2 χi3cdj3 qaqbqcqd . (A.23)

Here, all terms are nonvanishing. The first term, after renaming the summation indices i → j

and j → i, is equal to Y1. The second term, after renaming the summation indices i1 → j

and j → i1, is equal to the original term with a minus sign, i.e. to −Y2. And the two last
terms are both equal to . Accordingly, we find

Y2 = 1
2 Y1 + . (A.24)

Appendix A.4. Final result

Now we can collect all the intermediate relations (A.16), (A.18), (A.20), (A.22) and (A.24)
into the following list:

Y1 = Y4, (A.25)

Y2 = 1
2Y4 + , (A.26)

Y3 = 1
2Y4, (A.27)

Y4 = Y4, (A.28)

Y5 = 1
4Y4 − 1

2 , (A.29)

Y6 = 1
2Y4. (A.30)

From these we now derive the final result for the dispersion relation:

Y1 + Y2 + 2(Y3 + Y4 + Y5 + Y6) = 6Y4. (A.31)

Thus,

λ = 1

6 · 4!
[Y1 + Y2 + 2(Y3 + Y4 + Y5 + Y6)] = 1

4!
Y4 = −λ̃. (A.32)

Summarizing, the Fresnel equations obtained by different methods agree completely.
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